Introduction to Factoring Polynomials

Factoring is simply the distributive property in reverse.

Example 1:

a.) \(4(x + 2) \)
\[= 4x + 8 \]

b.) Factor: \(4x + 8 \)
First we ask what the greatest common factor (GCF) is, then we factor out the GCF.
Between \(4x \) and \(8 \), the GCF is \(4 \), since \(4 \) is the largest value that both terms divide evenly into both terms. So we factor out the \(4 \).

\[
4(+)
\]

We ask, \(4 \) times what gives us \(4x \)? \(4 \) times what gives us \(8 \)?

Example 2:

Factor completely:

a.) \(7x + 14 \)

b.) \(9a^2 + 6a \)

c.) \(3x^2y - 12xy^2 \)

d.) \(8x^2yz^4 + 12x^3y^2z^3 - 16x^2yz^2 \)
Factor Completely:

1. \(4x - 6 \)

2. \(9x^2 + 12x \)

3. \(8ab - 4ab^2 \)

4. \(12x^2y - 48xy^2 + 144x^2y^2 \)

5. \(a^2b + ab^2 - a^2b^2 \)

6. \(x^3y^2z - x^2y^3z^3 + x^5yz^4 \)