APPLICATIONS OF QUADRATIC EQUATIONS

= Integer Problems

Recall:
- Consecutive integers are of the form
 \[x, x+1, x+2, \ldots \]
- Consecutive odd integers AND
- Consecutive even integers are of the form
 \[x, x+2, x+4, \ldots \]

Example 1: Find two consecutive integers whose product is 11 more than their sum.

We must translate into math terms:

"two consecutive integers" \(\rightarrow \) \(x \) & \(x+1 \)

"product" \(\rightarrow \) multiplication

"is" \(\rightarrow \) =

"11 more than" \(\rightarrow \) + 11

"sum" \(\rightarrow \) addition

So our equation is

\[x(x+1) = x + (x+1) + 11 \]

Now we solve for \(x \):

- Simplify each side first:
 \[x^2 + x = 2x + 12 \]
- Set equal to zero:
\[
x^2 + x = 2x + 12
\]
\[
-2x - 12 = -2x - 12
\]
\[
x^2 + x - 2x - 12 = 0
\]
\[
x^2 - x - 12 = 0
\]

- **Factor:**

 \[
a = 1
\]

 \[
b = -1
\]

 \[
c = -12
\]

 \[
a \cdot c = -12
\]

 sum (we want -1)

 \[
 \begin{array}{ccc}
 1 & -12 & -11 \\
 2 & -6 & -4 \\
 4 & -3 & 1 \\
 -4 & 3 & -1 \\
 \end{array}
\]

 since \(a = 1\), we can use the shortcut

 \[
 (x - 4)(x + 3) = 0
\]

 - set each factor equal to zero

 \[
 x - 4 = 0 \quad x + 3 = 0
\]

 - solve for \(x\):

 \[
 \begin{align*}
 x - 4 &= 0 \\
 +4 \quad +4 & \quad -3 \quad -3 \\
 x &= 4 \\
 x &= -3
 \end{align*}
\]
We can check to see if both values we got solve the word problem:

- $x = 4$
 - If $x = 4$, the two consecutive integers are 4 and 5
 - Product: $4 \cdot 5 = 20$
 - Sum: $4 + 5 = 9$
 - Is the product 11 more than the sum?
 - $20 = 9 + 11$
 - Yes! so $x = 4$ is an answer.

- $x = -3$
 - If $x = -3$, the two consecutive integers are -3 and -2
 - Product: $(-3)(-2) = 6$
 - Sum: $(-3) + (-2) = -5$
 - Is the product 11 more than the sum?
 - $6 = -5 + 11$
 - Yes! so $x = -3$ is also an answer.
<table>
<thead>
<tr>
<th>APPLICATIONS OF QUADRATIC EQUATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Integer Problems Practice Problem</td>
</tr>
</tbody>
</table>

Find two consecutive integers whose product is 1 more than their sum.