Inequalities

We use the symbol $=$ to represent equality.

To express inequalities, we have the following symbols:

- $>$ greater than
- $<$ less than
- \geq greater than or equal to
- \leq less than or equal to
- \neq not equal to

Example 1:

True or False?

a) $-3 < -4$

The symbol $<$ means less than. Looking at the number line, $<$ means “to the left of”

so, $-3 < -4$ means -3 is to the left of -4 on the number line.

Therefore, this statement is false.
b) Consider \(x > 4 \)

This means \(x \) greater than and is to the right of \(4 \) on the number line.

- Can \(x \) be 5?
- Can \(x \) be 3?
- Can \(x \) be 4?

Example 2:

True or False?

\[
85 \geq 2[3 + 5(6 + 2)] \\
\geq 2[3 + 5(________)] \\
\geq 2[3 + _______] \\
2(______________) \\
\]

Answer:__

NOTE: For example 2, we must follow the Order of Operations.
1. True or False?

 a) $5 > 7$
 b) $9 > 11$
 c) $-4 > -5$
 d) $-11 > -10$

2. True or False?

 $6[2^3 - 7] + 15 \geq 21$