Multiplication and Division

Multiplication:

Multiplication by zero:

\[
3 \cdot 0 = 0 \\
x \cdot 0 = 0 \\
0 \cdot 0 = 0
\]

Signed multiplication:

\[
(\text{positive value}) \times (\text{negative value}) = \text{negative value} \\
(\text{negative value}) \times (\text{negative value}) = \text{positive value} \\
(\text{positive value}) \times (\text{positive value}) = \text{positive value}
\]

the table above can be applied to Division.

Reciprocals:

The reciprocal of \(\frac{3}{4} \) is \(\frac{4}{3} \)

The reciprocal of \(-\frac{2}{3} \) is \(-\frac{3}{2} \)

NOTE: Multiplying reciprocals always produces 1.
Example 1:

a) \(\frac{3 \cdot 4}{4 \cdot 3} = \)

b) \(-\frac{2}{3} \cdot -\frac{3}{2} = \)

c) \(3 \cdot \frac{1}{3} = \)

Division:

Recall: \(\frac{x}{y} \) means \(x \div y \)

Zero & Division:

Example 2:

a) \(\frac{0}{2} = 0 \) because \(0 \cdot 2 = 0 \)

b) \(\frac{2}{0} \) is undefined because there is no value that you can multiply by \(0 \) to get \(2 \).

Signed Division:

\((\text{negative value}) \div (\text{positive value}) = \text{negative value} \)
\((\text{positive value}) \div (\text{negative value}) = \text{negative value} \)
\((\text{negative value}) \div (\text{negative value}) = \text{positive value} \)
Example 3:

a) \(8 \div 2 = 4 \) because \(4 \cdot 2 = 8 \)
b) \(8 \div (-2) = -4 \) because \(\underline{} \cdot (-2) = 8 \)
c) \(-8 \div 2 = -4 \) because \(\underline{} \cdot (2) = -8 \)
d) \(-8 \div (-2) = \underline{} \) because \(\underline{} \cdot (\underline{}) = (\underline{}) \)

Recall: The word **product** always indicates **multiplication** and the symbol used for multiplication are \((\cdot)\) and \((\times)\). The words **quotient** always indicates **division** and the symbols used for division are \((\div)\) and \((\frac{3}{4})\).

Example 4:

Write a numerical expression for each phrase, and simplify.

a) The product of \(9\) and \(-2\) added to \(7\).

\[
7 + 9 \cdot (-2)
\]

\[
= 7 + (-18)
\]

\[
= 7 - 18
\]

\[
= \boxed{-11}
\]

b) the quotient of \(-20\) and \(4\) subtracted from \(7\)

\[
7 - (-20 \div 4)
\]

\[
= 7 + (-5)
\]

\[
= 7 + 5
\]

\[
= \boxed{12}
\]
1. The reciprocal of $-\frac{2}{5}$ is _____.

2. Evaluate the following:

 a) $\frac{5}{3} \cdot \frac{3}{5} = _____$

 b) $\frac{0}{52} = _____$

 c) $\frac{52}{0} = _____$

3. Write a numerical expression for each phrase and simplify:

 a) The product of -4 and 3 added to -10

 b) The quotient of 42 and -7 subtracted from -3