\[V_{\text{shell}} = V_{\text{outer shell}} - V_{\text{inner shell}} \]
\[= \pi r_1^2 h - \pi r_2^2 h \]
\[= \pi h (r_1^2 - r_2^2) \]
\[= \pi h (r_1 + r_2)(r_1 - r_2) \]

Taking the limit as \(\Delta x \to 0 \)

\[V_{\text{shell}} = \lim_{\Delta x \to 0} \left[\pi h \left(\frac{r_1 + r_2}{2} \right) \frac{(r_1 - r_2)}{\Delta x} \right] \]
\[\Rightarrow \pi h \cdot 2\pi \cdot \Delta x \]
\[\therefore V_{\text{shell}} = 2\pi rh \Delta x \]
Example 1: Find the volume of the shape by rotating the bounded region about the indicated axis.

a) \(y = \frac{1}{x^3} \), \(x = 1 \), \(x = 2 \) : Rotated about the line \(x = -1 \)

\[h = y \]
\[r = x - (-1) \]
\[r = x + 1 \]

\[V_{\text{shell}} = 2\pi \int \Delta x \]
\[= 2\pi (x+1) \cdot y \cdot \Delta x \]
\[= 2\pi (x+1) \cdot \frac{1}{x^3} \cdot \Delta x \]

\[V = 2\pi \int_{1}^{2} \left(\frac{x+1}{x^3} \right) dx \]
b) $y^2 = x$, $y = 1$, $x = 0$: Rotated about the line $y = 2$

$r = 2 - y$
$h = x = y^2$

$V_{\text{shell}} = 2\pi rh \Delta y$

$V = 2\pi \int_{0}^{1} (2-y)(y^2) \, dy$