Concave up

→ The slopes of the tangent lines are increasing. Therefore $f'(x)$ is increasing.
$f''(x) > 0$

Concave down

→ The slopes of the tangent lines are decreasing. Therefore $f'(x)$ is decreasing.
$f''(x) < 0$

Section 3.2: Relative Extrema + Graphing Polynomials

Definition:

$\begin{align*}
\text{Relative Max at } x_0^+ & : f(x_0) > f(x) \\
& \quad f'(x_0) = 0 \\
& \quad f''(x_0) < 0
\end{align*}$

$\begin{align*}
\text{Relative Min at } x_0^- & : f(x_0) < f(x) \\
& \quad f'(x_0) = 0 \\
& \quad f''(x_0) > 0
\end{align*}$

Relative Maximums and Relative Minimums are referred to as "Relative Extremum"
Theorem 3.2.2

Suppose that \(f(x) \) is defined on an open interval containing \(x_0 \). If \(f \) has a relative extremum at \(x_0 \), then \(x = x_0 \) is called a "critical point." This means \(f'(x_0) = 0 \) or \(f'(x_0) = \text{undefined} \).

\[\begin{align*}
 &f'(x_0) = 0 \\
 &f'(x_0) = \text{undefined}
\end{align*} \]

Note: If \(x_0 \) is a critical point, and \(f''(x_0) = 0 \), we classify \(x_0 \) as a "stationary point."

Theorem 3.2.3 (First Derivative Test)

If \(f'(x) \) changes from positive to negative this implies a Relative Maximum.

If \(f'(x) \) changes from negative to positive this implies a Relative Minimum.

Note: \(f(x) \) is continuous and \(x_0 \) is a critical point.

If \(f'(x) \) does not change signs then there is no Relative Extremum.
Theorem 3.2.4 (The Second Derivative Test)

Suppose that \(f(x) \) is twice differentiable at \(x_0 \).
- If \(f'(x_0) = 0 \) and \(f''(x_0) > 0 \), then there is a Relative Minimum at \(x_0 \).
- If \(f'(x_0) = 0 \) and \(f''(x_0) < 0 \), then there is a Relative Maximum at \(x_0 \).
- If \(f'(x_0) = 0 \) and \(f''(x_0) = 0 \), then: Inconclusive

Definition 3.2.5

→ The Geometric Interpretation of Multiplicity

Suppose that \(p(x) \) is a polynomial function with a root of multiplicity \("m" \) at \(x = r \).

\[p(x) = (x - r)^m \]

a) If \("m" \) is even, then the graph of \(f(x) \) is tangent to the \(x \)-axis at \(x = r \).

b) If \("m" \) is odd and \(> 1 \), then the graph is tangent to the \(x \)-axis, crosses the \(x \)-axis, and \(x_0 \) is an inflection point.

c) If \("m" = 1 \), then the graph is not tangent to the \(x \)-axis, crosses the \(x \)-axis, and may or may not be an inflection point.
Example 1:

Inflection point

Increasing

This has to be positive
#9 Find the critical points and identify which critical points are stationary points.

\[f(x) = \frac{x + 1}{x^2 + 3} \]

\[f'(x) = \frac{(1)(x^2 + 3) - (x + 1)(2x)}{(x^2 + 3)^2} \]

\[= \frac{x^2 + 3 - 2x^2 - 2}{(x^2 + 3)^2} \]

\[= \frac{-x^2 - 2x + 3}{(x^2 + 3)^2} \]

\[= -\frac{(x^2 + 2x - 3)}{(x^2 + 3)^2} \]

\[= -\frac{(x + 3)(x - 1)}{(x^2 + 3)^2} \]

Setting \(f'(x) = 0 \)

\[(x + 3) = 0 \]
\[x = -3 \]

\[(x - 1) = 0 \]
\[x = 1 \]

Critical points: \(x = -3 \), \(x = 1 \)

Stationary points: \(x = -3 \), \(x = 1 \)

#29 Find any relative extremum using \(f'(x) + f''(x) \)

\[f(x) = 1 + 8x - 3x^2 \]

\[= -3x^2 + 8x + 1 \]

\[f'(x) = -6x + 8 \]

\[f''(x) = -6 \]

Set \(f'(x) = 0 \)

\[-6x + 8 = 0 \]
\[x = \frac{4}{3} \]

Evaluating \(f''(x) \) when \(x = \frac{4}{3} \):

\[f''\left(\frac{4}{3}\right) = -6 \]

Relative Maximum at \(x = \frac{4}{3} \).