SECTION: THE DEFINITE INTEGRAL:

RIEMAN SUMS:

Previously we approximate area with the equal widths.

In this case we do not use equal widths.

\[\sum_{k=1}^{n} f(x_k^*) \Delta x \] is replaced by regular partition.

\[\sum_{k=1}^{n} f(x_k^*) \Delta x_k \]

NOTE: If the partitions have equal widths, the partition is said to be regular.

- Allowing unequal widths replaces \(\sum_{k=1}^{n} f(x_k^*) \Delta x \) with \(\sum_{k=1}^{n} f(x_k^*) \Delta x_k \).
- Using \(\Delta x_k \), we let \(\max \Delta x_k \to 0 \) which has the same effect as letting \(n \to \infty \).
- Therefore we have

\[A = \lim_{\max \Delta x_k \to 0} \sum_{k=1}^{n} f(x_k^*) \Delta x_k \]

DEFINITION: 4.5.1:

If the limit exists, we say that \(f \) is integrable on \([a, b]\):

\[\int_{a}^{b} f(x) \, dx = \lim_{\max \Delta x_k \to 0} \sum_{k=1}^{n} f(x_k^*) \Delta x_k \]

DEFINITE INTEGRAL RIEMANN SUM.
THEOREM

\[A = \int_{a}^{b} f(x) \, dx \] represents the net signed area between \(f(x) \) and \(y = 0 \).

\[\int_{0}^{2\pi} \sin x \, dx = 0 \]

EXAMPLE 1: Evaluate the integral by graphing \(f \) and using an approximate geometric formula.

(a) \[\int_{-1}^{1} \sqrt{1 - x^2} \, dx \]

Notice: \(y = \sqrt{1 - x^2} \)

\[y^2 = 1 - x^2 \]

\[y^2 + x^2 = 1 \]

\[\int_{-1}^{1} \sqrt{1 - x^2} \, dx = \frac{\pi}{2} \]

(b) \[\int_{0}^{2} (x - 1) \, dx = 0 \]

DEFINITION:

\[\int_{a}^{a} f(x) \, dx = 0 \]

\[\int_{a}^{b} f(x) \, dx = -\int_{b}^{a} f(x) \, dx \]

THEOREM

\[\int_{a}^{b} cf(x) \, dx = c \int_{a}^{b} f(x) \, dx \]

\[\int_{a}^{b} [f(x) + g(x)] \, dx = \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx \]

THEOREM

\[\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx \]
Example 2:

\[\int_{1}^{2} |2x - 3| \, dx \]

\[|2x - 3| = \begin{cases}
2x - 3 & x \geq \frac{3}{2} \\
-x + 3 & x \leq \frac{3}{2}
\end{cases} \]

\[A_1 = \frac{1}{2} \left(\frac{5}{2} \right) (5) \]

\[A_1 = \frac{25}{4} \]

\[A_2 = \frac{1}{2} \left(\frac{1}{2} \right) 1 \]

\[A_2 = \frac{1}{4} \]

\[\int_{1}^{2} |2x - 3| \, dx = \frac{25}{4} + \frac{1}{4} = \frac{26}{4} = \frac{13}{2} \]

Example 3:

\[\int_{0}^{1} (x + 2 \sqrt{1-x^2}) \, dx \]

\[\int_{0}^{1} x \, dx + 2 \int_{0}^{1} \sqrt{1-x^2} \, dx \]

\[A_1 = \frac{1}{2} (1)(1) \]

\[A_1 = \frac{\pi}{4} \]

\[= \frac{1}{2} \]

\[A_T = \frac{1}{2} + 2 \left(\frac{\pi}{2} \right) = \frac{1 + \pi}{2} \]