SECTION: RECTILINEAR MOTION: REVISITED USING INTEGRATION

- Constant

\[\int_a^t a \, dt = at + C_1 \]
\[\therefore v(t) = at + C_2 \]

Notice: \(C_1 \) is initial velocity \((v_0) \). \(v_0 = v(0) \)
\[\therefore v(t) = at + v_0 \]

- To find \(s(t) \), we integrate \(v(t) \)
\[\int v(t) \, dt \]
\[= \int (at + v_0) \, dt \]
\[= \frac{1}{2} at^2 + v_0 t + C_2 \]

- Theorem:
\[s(t) = \frac{1}{2} at^2 + v_0 t + C_2 \]

Notice: \(s(0) = C_2 \rightarrow s(0) = \text{The initial position} \).

- Distanced traveled ≠ displacement

The particle returned to its initial position after the given time interval.

- Displacement

The net signed area is \(0 \), this means the particle returned to its initial position.
DISTANCE TRAVELED
\[\int_a^b |v(t)| \, dt \]

EXAMPLE 1: Find position function

a) \(v(t) = 3t^2 - 2t \quad s(0) = 1 \)

\[s(t) = \int v(t) \, dt = \int (3t^2 - 2t) \, dt = \frac{3}{3} t^3 - \frac{2}{2} t^2 + C \]

\[s(t) = t^3 - t^2 + C \]

Since \(s(0) = 1 \), we get \(0^3 - 0^2 + C = 1 \), so \(C = 1 \).

\[\therefore s(t) = t^3 - t^2 + 1 \]

EXAMPLE 2: A particle has a constant velocity of 25 cm/sec for 4 sec. Next, it experiences a negative acceleration of -10 cm/sec² on the time interval 4 < t < 12.

After 4 sec, \(a = -10 \) cm/sec²

\[a(t) = \begin{cases} 0 & 0 < t < 4 \\ -10 & 4 < t < 12 \end{cases} \]

\[v(t) = \int a(t) \, dt \]

For \(0 < t < 4 \)
\[v(0) = \int 0 \, dt = c = 25 \text{ cm/sec} \]

For \(4 < t < 12 \)
\[v(t) = \int (-10) \, dt = -10t + C \]

Since \(v_0 = 25 \text{ cm/sec} \) when \(4 < t < 12 \) we have \(v(4) = 25 \text{ cm/sec} \).

\[v(t) = -10t + C \]

\[v(4) = -10(4) + C \]

\[25 = -40 + C \]

Solving for \(C \):
\[C = 65 \]
Example 2: continues:

\[v(t) = -10t + 65 \quad 9 < t < 12 \]

- When does \(v(t) = 0 \)?

\[0 = -10t + 65 \]
\[10t = 65 \]
\[t = 6.5 \]

c) \[s(t) = \int v(t) \, dt \]
\[s(t) = \begin{cases}
25t & 0 < t < 9 \\
-5t^2 + 65t - 80 & 9 < t < 12
\end{cases} \]

\[s(t) = \int (-10t + 65) \, dt \]
\[s(t) = -5t^2 + 65t + C \quad 9 < t < 12 \]

Note: \(s(9) = 100 \)

\[100 = -5(9)^2 + 65(9) + C \]
\[-80 = C \]
\[\therefore s(t) = -5t^2 + 65t - 80 \]

d) What is the maximum positive position?

\[s(6.5) = 131.25 \]

Example 3: constant acceleration

\[90 \text{ mi/hr} \quad 60 \text{ mi/hr} \]
\[200 \text{ ft} \]

\[\frac{90}{30} \text{ mi/ft} \left(\frac{5280 \text{ ft}}{1 \text{ mi}} \right) \left(\frac{1 \text{ hr}}{3600 \text{ sec}} \right) = 132 \text{ ft/sec} \]

\[\frac{60}{30} \text{ mi/ft} \left(\frac{5280 \text{ ft}}{1 \text{ mi}} \right) \left(\frac{1 \text{ hr}}{3600 \text{ sec}} \right) = 88 \text{ ft/sec} \]
Example 3: continues

a) Find acceleration

"a" is constant

For constant acceleration,
\[v(t) = \sqrt{a} \, dt = at + v_0 \]
\[v(t) = at + 132 \]
\[s(t) = \int v(t) \, dt \]
\[= \int (at + 132) \, dt \]
\[s(t) = \frac{a}{2} t^2 + 132t + s_0 \]

Note: We define \(s_0 = 0 \)

\[\therefore s(t) = \frac{a}{2} t^2 + 132t \]

We can solve for \(t \) after the car travels 200 ft:
\[200 = \frac{a}{2} t^2 + 132t \]

We can also use the fact that after 200 ft of travel,
\[v(t) = 88 \text{ ft/sec} \]
\[88 = at + 132 \]

Since \(v(t) = 88 = at + 132 \), we get \(88 = at + 132 \), we get
\[\frac{-44}{a} = t \]
\[\frac{-44}{a} = t \text{ or } \frac{-44}{t} = a \]

We substitute our result into \(200 = \frac{a}{2} t^2 + 132t \)
\[200 = \frac{(-44)}{2} t^2 + 132t \]
\[200 = -22t + 132t \]
\[200 = 110t \]
\[t = \frac{200}{110} \]

To find acceleration, we will use \(v(t) \)
\[v(t) = at + 132 \]
we know \(v \left(\frac{20}{11} \right) = 88 \)
\(88 = a \left(\frac{20}{11} \right) + 132 \)
\(44 = a \left(\frac{20}{11} \right) \)
\(-44 = a \left(\frac{11}{20} \right) \)
\(a = \frac{-242}{10} \)
\(a = -24.2 \text{ or } -\frac{121}{5} \)

- RECALL: constant acceleration
 \(a(t) = a \)
 \(v(t) = a(t) + v_0 \)
 \(s(t) = \frac{1}{2} at^2 + v_0 t + s_0 \)

- example 4: Find \(s(t) \) given the following information.
 \(a(t) = 2t^{-3} \)
 \(v(1) = 0 \)
 \(s(1) = 2 \)
 \(v(t) = \int a(t) \, dt \)
 \(= \int 2t^{-3} \, dt \)
 \(v(t) = -t^{-2} + C \)

To find \(C \) we use \(v(1) = 0 \)
\(v(t) = -t^{-2} + C \)
\(0 = -1 + C \)
\(1 = C \)
\(\therefore v(t) = -t^{-2} + 1 \)

\(s(t) = \int v(t) \, dt \)
\(= \int (-t^{-2} + 1) \, dt \)
\(s(t) = t^{-1} + t + C \)
\(s(1) = (1)^{-1} + (1) + C \)
\(2 = 2 + C \)
\(0 = C \)
Example 4: continues:

\[s(t) = \frac{1}{t} + t \]