CHAPTER 2: DERIVATIVES

Derivative - the slope of the tangent line and their rates of change.

SECTION 2.1 TANGENT LINES & RATES OF CHANGE

Finding Equations of Tangent Lines

Equation of a line:

\[y - y_1 = m(x - x_1) \]

\[y - f(x_0) = m(x - x_0) \]

Recall:

\[m_{\text{sec}} = \lim_{x_1 \to x_0} \left[\frac{f(x_1) - f(x_0)}{x_1 - x_0} \right] \]

\[m_{\text{tan}} = \lim_{x_1 \to x_0} \left[\frac{f(x_1) - f(x_0)}{x_1 - x_0} \right] \]

\[m_{\text{sec}} = \frac{f(x_0 + h) - f(x_0)}{h} \]

\[m_{\text{tan}} = \lim_{h \to 0} \left[\frac{f(x_0 + h) - f(x_0)}{h} \right] \]
Find the equation of the tangent line on \(y = \frac{2}{x} \), at \((2,1)\).

\[
\left[x, f(x) \right] = (2, 1)
\]

\[
m_{\text{tan}} = \lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{h} \right]
\]

\[
\lim_{h \to 0} \left[\frac{2}{2h} - 1 \right]
\]

\[
\lim_{h \to 0} \left[\frac{2}{2h} - 1 \right] \cdot \frac{2h}{2h}
\]

\[
\lim_{h \to 0} \left[\frac{2(2h) \left(\frac{2h}{1} \right) - 1 \left(\frac{2h}{1} \right)}{h(2h)} \right]
\]

\[
\lim_{h \to 0} \left[\frac{2-(2+h)}{h(2h)} \right]
\]

\[
\lim_{h \to 0} \left[\frac{2-2-h}{h(2h)} \right]
\]

\[
\lim_{h \to 0} \left[\frac{-h}{h(2h)} \right]
\]

\[
\lim_{h \to 0} \left[\frac{-1}{2h} \right]
\]

\[
-\frac{1}{2} = \frac{1}{2}
\]

This value represents the derivative of \(f(x) \) at \(x = 2 \).

\[m_{\text{tan}} = -\frac{1}{2} \,, \quad (2,1) \]

\[y - y_1 = m (x - x_1) \]

\[y - 1 = -\frac{1}{2} (x - 2) \]

\[y - 1 = -\frac{1}{2} x + 1 \]

\[y = -\frac{1}{2} x + 2 \quad \text{Eqln of Tan Line} \]
SECTION 2.1 cont...

E1 cont. Suppose we want a formula that would give us the slope of the tangent line for any value of x.

\[f(x) = \frac{2}{x} \]

\[\lim_{{h \to 0}} \left[\frac{f(x+h) - f(x)}{h} \right] \] "The Limit Definition of the Derivative"

\[\lim_{{h \to 0}} \left[\frac{\frac{2}{x+h} - \frac{2}{x}}{h} \right] = \frac{x(x+h)}{x(x+h)} \]

\[\lim_{{h \to 0}} \left[\frac{2x - 2(x+h)}{hx(x+h)} \right] \]

\[\lim_{{h \to 0}} \left[\frac{2x - 2x - 2h}{hx(x+h)} \right] \]

\[\lim_{{h \to 0}} \left[\frac{-2h}{hx(x+h)} \right] \]

\[\lim_{{h \to 0}} \left[\frac{-2}{x(x+h)} \right] \]

\[\frac{-2}{x(x+h)} = \frac{2}{x(x)} = \frac{-2}{x^2} \]

Note: derivative notation

\[f'(x) = -\frac{2}{x^2} \]

"f" prime of x = first derivative

\[f''(x) = \text{second derivative} \]

E2. The position function.

What is the average speed over the 4 seconds?

\[m = \frac{20 \text{ ft}}{4 \text{ sec}} \]

\[m = 5 \text{ ft/sec} \]
[E3] Use the graph to answer the following questions.

- maximum velocity in the positive direction.
- maximum velocity in the negative direction.

\[M_{\text{sec}} = \frac{2}{3} \text{ cm/sec}. \]

(Seconds)

a) When is the instantaneous velocity equal to \(\varnothing \)?

0, 2, 4, 8

b) What is \(V_{\text{avg}} \) on \([0, 8]\)?

0

c) When is \(V_{\text{inst.}} \) at maximum?

1, 2 sec. positive
3.1 sec negative

NOTE

\[M_{\text{tan}} = \text{instantaneous} \]
\[M_{\text{sec}} = \text{average} \]
SECTION: TANGENT LINES & RATES OF CHANGE

\[y - y_1 = m(x - x_1) \]

- \(y - y_1 = m(x - x_1) \)
 - tangent line: \(m = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \)
 - tangent line: \(m_{\text{tan}} = \lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0} \)

- EQUATION OF TANGENT LINE
 \[y - f(x_0) = m_{\text{tan}} (x - x_0) \]

\[m_{\text{sec}} = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \]

NOTE:

\[m_{\text{tan}} = \lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0} \]

\[m_{\text{sec}} = \frac{f(x_0 + h) - f(x_0)}{h} \]

\[m_{\text{tan}} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \]

- **EXAMPLE 1:** Find the equation of the tangent line on \(y = \frac{2}{x} \)

 at \((2, 1) \)

 \[m_{\text{tan}} = \lim_{h \to 0} \frac{f(2 + h) - f(2)}{h} \]

 \[= \lim_{h \to 0} \frac{\frac{2}{2+h} - 1}{-h} \frac{(2+h) - 1}{h} \frac{2-h}{h(2+h)} \]
Example 1 continues:

\[m_{\text{tan}} = \lim_{h \to 0} \frac{-1}{2 + h} \]

\[m_{\text{tan}} = -\frac{1}{2} \]

\[-\frac{1}{2} \text{ is } m_{\text{tan}} \text{ at } x = 2 \text{ on } y = \frac{2}{x} \]

\[m_{\text{tan}} = -\frac{1}{2} \quad (2, 1) \]

\[y - f(x_0) = m_{\text{tan}}(x - x_0) \]

\[y - 1 = -\frac{1}{2}(x - 2) \]

\[y = -\frac{x}{2} + 2 \]

Suppose we wanted a formula that would give us the slope of the tangent for any value of \(x \)

\[m_{\text{tan}} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \]

Limit definition of the derivative of \(f(x) \) \([f'(x) \text{ "f prime of } x\text{"}] \)

Where \(f'(x) \) gives you the slope of the tangent line on \(f(x) \) at any given value of \(x \)!

Example 2: Find \(f'(x) \) for \(f(x) = \frac{2}{x} \)

\[f'(x) = \lim_{h \to 0} \left[\frac{\frac{2}{x + h} - \frac{2}{x}}{h} \right] x(x + h) \]

\[= \lim_{h \to 0} \frac{2x - 2(x + h)}{h(x + h)} \]

\[= \lim_{h \to 0} \frac{-2h}{h(x + h)} \]

\[= \frac{-2}{x(x + h)} \]

\[f'(x) = -\frac{2}{x^2} \]

Note: \(f'(2) = -\frac{1}{2} \quad i

f'(3) = -\frac{2}{9} \quad i

f'(4) = -\frac{1}{8} \]
Example 3:

a) average velocity over the interval $0 \leq t \leq 3$

b) values of t at which the instantaneous velocity is zero

$$t = 0, 2, 4, 6$$

c) values of t at which the instantaneous velocity is either max or min

$$\text{max: } t = 1$$
$$\text{min: } t = 3$$

d) instantaneous velocity when $t = 3$.

$$v(t) = \frac{15 \text{ cm}}{(3.5 - 2.3) \text{ sec}} \approx -10 \text{ cm/sec}$$

Example 4 $y = 2x^2$, $x_0 = 0$, $x_1 = 1$

a) $V_{avg} = \frac{2}{1} = m_{sec}$

b) $V_{inst} = \frac{0}{0} = m_{tan}$

c) $m_{tan} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$

$$= \lim_{h \to 0} \frac{2(x_0 + h)^2 - 2x_0}{h}$$
Example 4 continues:

c) \[\lim_\limits_{h \to 0} \frac{2x^2 + 4x\cdot h + 2h^2 - 2x^2}{h} \]

\[= \lim_\limits_{h \to 0} \frac{h(4x_0 + 2h)}{h} \]

\[= 4x_0 + 2(0) \]

\[m_{\tan} = 4x_0 \]

Example 5: \(f(x) = x^2 - 1 \quad x_0 = 1 \)

we want the equation of the tangent line on \(f(x) = x^2 - 1 \quad x_0 = -1 \)

\[m_{\tan} = \lim_\limits_{h \to 0} \frac{(x_0 + h)^2 - 1 - (x_0^2 - 1)}{h} \]

\[= \lim_\limits_{h \to 0} \frac{x_0^2 + 2x_0h + h^2 - x_0^2 + 1}{h} \]

\[= \lim_\limits_{h \to 0} \frac{h(2x_0 + h)}{h} \]

\[= 2x_0 \]

\[\therefore \text{the } m_{\tan} @ x_0 = -1 \text{ is } -2 \]

since \(m_{\tan} = -2 \) the line passes through \((-1,0)\) we get \(y - y_1 = m(x - x_1) \)

\[y - 0 = 2(x - (-1)) \Rightarrow y = -2(x + 1) \]