TRIGONOMETRY REVIEW

Unit Circle

\[\text{Arc length } (S) = r \theta \]

\[\text{Area of a Segment } (A) = \frac{1}{2} r^2 \theta \]

Special Triangles

30°, 60°, 90°

45°, 45°, 90°

Circumference of a Circle

\[C = 2\pi r \]

Circumference of the Unit Circle

\[C_u = 2\pi (1) \]

Note: the radius of the Unit Circle is 1. \(\therefore C_u = 2\pi \)

Recall:

\[y = \tan \theta \]

\[y = \cot \theta \]

\[y = \sec \theta \]

\[y = \csc \theta \]

Recall:

\[\cos^2 \theta + \sin^2 \theta = 1 \]
[Pythagorean Theorem]

\[\sec^2 \theta - \tan^2 \theta = 1 \]

\[\csc^2 \theta - \cot^2 \theta = 1 \]
Recall:

* \[\csc \theta = \frac{1}{\sin \theta} \]
* \(\frac{\theta}{\theta} = \text{undefined} \)

E1

Graph \(\sin (2\theta - \frac{\pi}{2}) + 1 \)

\[0 \leq 2\theta - \frac{\pi}{2} \leq 2\pi \]
\[\frac{\pi}{2} \leq \theta \leq \frac{5\pi}{2} \]

\[\frac{\pi}{4} \leq \theta \leq \frac{5\pi}{4} \] period

E2

Section Appendix B, #7.

\[\tan \theta = 3 \]
Identify all trig functions of \(\theta \).

\[\sin \theta = \frac{2}{\sqrt{10}} \]
\[\cos \theta = \frac{1}{\sqrt{10}} \]
\[\csc \theta = \frac{\sqrt{10}}{2} \]
\[\sec \theta = \sqrt{10} \]
\[\tan \theta = 3 \]
\[\cot \theta = \frac{1}{3} \]

E3

Appendix B, #15d.

\[\tan \theta = -\frac{1}{\sqrt{3}} \]
\[-\frac{\pi}{2} < \theta < 0 \]

\[(\frac{3}{2})^2 + (\frac{1}{2})^2 = c^2 \]
\[c = \sqrt{2} \]

\[\tan \theta = -\frac{1}{\sqrt{3}} \]
\[\cot \theta = -\sqrt{3} \]

E4

Appendix B, #27.

\[\csc \theta = \frac{2}{\sqrt{3}} \]

\[\sin \theta = \frac{\sqrt{3}}{2} \]
\[\theta = \frac{\pi}{3} \pm 2\pi n \]
\[\theta = \frac{2\pi}{3} \pm 2\pi n \]

Note: \(\tan \theta = 3 \)

Using SOH-CAH-TOA we are able to draw a triangle and use the pythagorean theorem to find the missing side.

Inside triangle signifies first quadrant. Recall the boundaries of \(\tan \theta \) is

\[-\frac{\pi}{2} < \theta < \frac{\pi}{2} \]

\(\tan \theta \) must be in the first quadrant since its positive.

\[\frac{\sqrt{2}}{3} \]

However, in [E2] \(\tan \theta = -\frac{1}{\sqrt{3}} \), so it is safe to assume that \(\tan \theta \) is in the 4th quadrant.