Organic chemistry:

CARBON:
- Atomic # = 6, therefore has 4 valence electrons
- Forms covalent bonds with:

Hydrocarbons (p. 34; Fig. 3.1):
Ex.

6 FUNCTIONAL GROUPS: (p. 35; Fig. 3.2)

1. HYDROXYL GROUP

2. CARBONYL GROUP
 ALDEHYDES (C dbl bond O at the end)
 KETONES (C dbl bond O in middle)

3. CARBOXYL GROUP
carboxylic acids.

4. AMINE GROUP
amines.

5. SULFHYDRYL GROUP

6. PHOSPHATE GROUP
 Ex. ATP ---> ADP + Pi

Macromolecules:

4 classes of macromolecules in living organisms:
1. Carbohydrates
2. Proteins
3. Nucleic acids
4. Lipids

Classifying organic compounds:
 Monomers:

 Polymers:
Formation of polymers: (p. 36; Figure 3.3A)

Dehydration synthesis:

Ex. glucose + glucose = maltose (found in beer)

Breaking of polymers: (p. 36; Figure 3.3B)

Hydrolysis (water; loosening or splitting)

Ex. digestive enzymes

Types of Macromolecules:

CARBOHYDRATES:

Classified by:

1. **Monosaccharides** = (mono = single; sacchar = sugar) (p. 37; fig. 34B)

 Simple sugar composed of:
 Major nutrient for cells, with glucose being the most common.

 Can be produced by photosynthesis from CO₂, H₂O & sunlight.

 Photosynthesis: \(6\text{CO}_2 + 6\text{H}_2\text{O} + \text{sunlight} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 \)

 Used in cellular respiration.

 Respiration: \(\text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 \rightarrow 6\text{CO}_2 + 6\text{H}_2\text{O} \)

 Can be used into forming disaccharides & polysaccharides.

2. **Disaccharides** = (Di = two; saccharide = sugar)

 Results from the removal of:

 (p. 38; fig. 3.5)

<table>
<thead>
<tr>
<th>Disaccharide</th>
<th>Monomers</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maltose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sucrose</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. **Polysaccharide:** (p. 39; fig. 3.7)

 -2 important biological functions:

 1. **Energy storage** (starch & glycogen)

 a) **Starch:**

 b) **Glycogen:**

 2. **Structural support** (cellulose & chitin)

 a) **Cellulose:**

 b) **Chitin:**
PROTEINS: (pp. 42-45; Figures 3.12 – 3.18)

Peptide bond (p. 43; Fig. 3.13):
-N-C-C-N-C-C- = backbone
Polypeptide chain =

There are **20 amino acids** which make up proteins.
Amino acids contain both **carboxyl** and **amino** functional groups.

Levels of protein structure (p. 45; Figs. 3.15 – 3.18):
a) **Primary structure (1°):**

b) **Secondary structure (2°):**

2 types of secondary structure:
- **α helix**
- β pleated sheet

c) **Tertiary structure (3°):**

1. Weak interactions (but cumulatively make it stable)
 a)
 b)
 c)

2. Covalent linkage
disulfide bridges
d) **Quaternary structure (4°):**

 Ex. Hemoglobin = 4 subunits

Denaturation:
Causes of denaturation:
1.
2.
3.
4.

8 Functions of proteins:
1. structural support
2. storage
3. transport
4. hormonal
5. receptor
6. contractile
7. defense
8. enzymatic
NUCLEIC ACIDS: (p. 46 - 47; Figs. 3.19 - 3.20A & B)

Nucleotide = building block of a nucleic acid; composed of:

a) **Pentose** (5-C sugar)

b) **Nitrogenous bases**:
 - **Pyrimidine**:
 - Purine:

c) **Phosphate** Group:

3 **Examples of Nucleotide based molecules**:

1. **DNA** = deoxyribonucleic acid
 - DNA: the double helix = 3-D shape = Watson & Crick => 1953
 - Contains:

2. **RNA** = ribonucleic acid
 - Contains:

3. **ATP** = adenosine triphosphate

Functions of Nucleotide based molecules
 - a)
 - b)
 - c)
 - d)

LIPIDS: (p. 40 – 41)

1. **Fats**: macromolecules constructed from:
 - a) glycerol = 3C -OH
 - b) Fatty acid (carboxylic acid)
 - carboxyl:
 - hydrocarbon tail:
 - Formation of fats (p. 40; Fig. 3.8 B & C)

 Triglycerides:

<table>
<thead>
<tr>
<th>SATURATED</th>
<th>UNSATURATED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex.</td>
<td>Ex.</td>
</tr>
</tbody>
</table>
2. **Phospholipids**
 Composed of:
 Hydrophilic heads & Hydrophobic tails

 Amphipatic:

 Micelles:

 Surfactant:

3. **Steroids** (p. 41; Fig. 3.9)

 Functions of lipids:
 1.
 2.
 3.
 4.
 5.
 6.