Chapter 24 Fungi
Kingdom Fungi
- Eukaryotic
- Single or multicellular
- Heterotrophic
- Saprobic/decomposers
Symbiotic relationships
Worldwide
Many species of fungus produce the familiar mushroom (a) which is a reproductive structure. This (b) coral fungus displays brightly colored fruiting bodies. This electron micrograph shows (c) the spore-bearing structures of *Aspergillus*, a type of toxic fungi found mostly in soil and plants. (credit “mushroom”: modification of work by Chris Wee; credit “coral fungus”: modification of work by Cory Zanker; credit “Aspergillus”: modification of work by Janice Haney Carr, Robert Simmons, CDC; scale-bar data from Matt Russell)
Fungal hyphae may be
(a) septated or
(b) coenocytic (coeno- = “common”; -cytic = “cell”) with many nuclei present in a single hypha.
Fungal body structure

Reproductive structure

Hyphae

Spore-producing structures

Mycelium

Fig. 31-2

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.
Fig. 31-4

(a) Hyphae adapted for trapping and killing prey

(b) Haustoria

Copyright © 2009 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.
Mycorrhizae

- **Ectomycorrhizae (10%)**
 - Over root surface
 - Into extracellular spaces of root cortex

- **Arbuscular mycorrhizae (85%)**
 - Within cortical root cells

Function? Minerals & PO$_4$ to plants
Generalized Life Fungal Lifecycle

Key

- Haploid \((n) \)
- Heterokaryotic (unfused nuclei from different parents)
- Diploid \((2n) \)

Asexual Reproduction

Spore-producing structures

Spores

Mycelium

Germination
Generalized Life Fungal Lifecycle

Key
- Haploid (n)
- Heterokaryotic (unfused nuclei from different parents)
- Diploid (2n)

Spore-producing structures
- ASEXUAL REPRODUCTION
- GERMINATION

Mycelium
- HETEROKARYOTIC stage
- KARYOGAMY (fusion of nuclei)
- PLASMOGAMY (fusion of cytoplasm)
- Zygote
- SEXUAL REPRODUCTION
- MEIOSIS
- Spores

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.
Asexual reproduction

- Mycelia
- Haploid spores
Asexual reproduction → budding

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.
Origin of Fungi

UNICELLULAR, FLAGELLATED ANCESTOR

Animals (and their close protistan relatives)

Nucleiids

Chytrids

Other fungi

Opisthokonts
Figure 31.10

Fungal Taxonomy

- **Chytrids** (1,000 species)
- **Zygomycetes** (1,000 species)
- **Glomeromycetes** (160 species)
- **Ascomycetes** (65,000 species)
- **Basidiomycetes** (30,000 species)
Phylum Chytridiomycota

- Found: lakes & soil
- Decomposers
- Mutualistic relationship (gut flora)
- Parasitic
- Produce flagellated zoospores

Chytrids (1,000 species)
Chytrids
Zygomycetes
Glomeromycetes
Ascomycetes
Basidiomycetes
Phylum Zygomycetes/Zygomyctota
- Spore production from sporangium
- The “Molds”
- Coenocytic hyphae
- Asexual & sexual reproduction
- Worldwide

Zygomycetes (1,000 species)
Figure 31.12e/Fig 24.9

Rhizopus growing on bread

Hyphae

Sporangium

25 μm
SEXUAL REPRODUCTION

Young zygosporangium (heterokaryotic)

Gametangia with haploid nuclei

Mating type (+)

Mating type (–)

PLASMOGAMY

KARYOGAMY

Dispersal and germination

Sporangium

Spores

Diploid nuclei

Diploid (2n)

Haploid (n)

Heterokaryotic (n + n)

Key

- Haploid (n)
- Heterokaryotic (n + n)
- Diploid (2n)

Fig 24.11

Rhizopus growing on bread
Fig. 24.11

Rhizopus growing on bread

SEXUAL REPRODUCTION
- **Gametangia with haploid nuclei**
- **Mating type (+)**
- **Mating type (−)**
- **Young zygosporangium (heterokaryotic)**

PLASMOGAMY

KARYOGAMY

MEIOSIS

ASEXUAL REPRODUCTION
- **Dispersal and germination**
- **Sporangia**
- **Mycelium**
- **Spores**

Key
- Haploid (n)
- Heterokaryotic (n + n)
- Diploid (2n)
• Zygomycetes asexual and asexual life cycles
• Sexual life cycle: plus and minus mating types conjugate form zygosporangium
• Sporangia grow at the end of stalks, which appear as (a) white fuzz seen on this bread mold, *Rhizopus stolonifer*. The (b) tips of bread mold are the spore-containing sporangia. (credit b: modification of work by “polandeze”/Flickr)
Glomeromycetes (160 species)

Chytrids
Zygomycetes
Glomeromycetes
Ascomycetes
Basidiomycetes

Fungal hypha
Phylum Glomeromycetes

- Arbuscular mycorrhizae (once in zygomycetes)
- Mutualistic relationship with plant roots
(a) Ectomycorrhiza and (b) arbuscular mycorrhiza have different mechanisms for interacting with the roots of plants. (credit b: MS Turmel, University of Manitoba, Plant Science Department)
Ascomycetes (65,000 species)

Chytrids
Zygomycetes
Glomeromycetes
Ascomycetes
Basidiomycetes
Phylum Ascomycetes (Ascomycota)

- Sac fungi → ascus/asci within ascocarp
- Worldwide (terrestrial, marine & fresh water)
- Pathogens, decomposers, symbionts
- Long lived dikaryotic stage

Morchella esculenta, the tasty morel

Tuber melanosporum, a truffle
Phylum Ascomycetes (Ascomycota)

• Types of ascocarp:
 - Apothecium “cuplike”
 - Cleistothecium
 - Perithecium “flasklike”
 - Asexual condia
Haploid spores (conidia)

Dispersal

Germination

Hypha

Conidiophore

Mycelium

ASEXUAL REPRODUCTION

Key

- Haploid (n)
- Dikaryotic (n + n)
- Diploid (2n)
ASEXUAL REPRODUCTION

- **Conidiophore**
- **Mycelium**
- **Germination**
- **Dispersal**

SEXUAL REPRODUCTION

- **Conidia; mating type (-)**
- **Mating type (+)**
- **Dikaryotic hyphae**
- **Ascus** (dikaryotic)
- **Mycelia**
- **Karyogamy**
- **Diploid nucleus** (zygote)

Key

- Haploid (n)
- Dikaryotic ($n + n$)
- Diploid (2n)

Dispersal

- **Asci**
- **Ascospores**
- **Eight ascospores**
- **Four haploid nuclei**

Meiosis

Plasmogamy

Karyogamy
The lifecycle of an ascomycete is characterized by the production of asci during the sexual phase. The haploid phase is the predominant phase of the life cycle.
Basidiomycetes (30,000 species)

- Chytrids
- Zygomycetes
- Glomeromycetes
- Ascomycetes
- Basidiomycetes
Phylum
Basidomycetes/Basidomycota
• “Club fungus” → basidium/basidia
• Symbionts, plant parasites, decomposers
• Long lived dikaryotic stage

Maiden veil fungus (*Dictyphora*), a fungus with an odor like rotting meat

Phylum
Basidomycetes/Basidomycota

Puffballs emitting spores

Shelf fungi, important decomposers of wood
Basidomycetes Sexual Lifecycle

Basidium
- Diploid (2n)
- Haploid (n)
- Dikaryotic (n+n)

Key
- Haploid (n)
- Dikaryotic (n+n)
- Diploid (2n)

PLASMOGAMY
- Mating type (+)
- Haploid mycelia
- Gills lined with basidia

SEXUAL REPRODUCTION
- Mating type (-)
- Dikaryotic mycelium

KARYOGAMY
- Diploid nuclei

MEIOSIS
- Basidium containing four haploid nuclei

Dispersal and germination
- Basidiospores (n)
- Basidium with four basidiospores

Basidiocarp (n+n)
- Basidium with four basidiospores
- Basidiospore (1 µm)

Haploid mycelia
- Basidium mycelia

Dikaryotic mycelium
- Basidium mycelia

Fig. 31-19-4/Fig 24.16

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.
Fairy ring \rightarrow mycelium expansion
Dueteromycetes/Dueteromycota

- Imperfect fungi
 - Only asexual reproduction
 - No known sexual stage
Role of Fungi

• Decomposers
 • Cycling nutrients (C, N)

• Mutualism
 • Plants
 – Mycorrhizae
 » Ecto & arbuscular
RESULTS

- Endophyte not present; pathogen present (E–P+)
- Both endophyte and pathogen present (E+P+)

Leaf mortality (%)
- E–P+: 30%
- E+P+: 10%

Leaf area damaged (%)
- E–P+: 15%
- E+P+: 5%
Role of Fungi

• **Decomposers**
 - Cycling nutrients (C, N)

• **Mutualism**
 - Plants
 - Mycorrhizae
 » Ecto & arbuscular
 - Animals
 - Lichens
Animal symbiosis
Fig. 31-24/Fig 24.23

Lichen \rightarrow cyanobacteria & ascomycetes species

- Algal cell
- Ascocarp of fungus
- Fungal hyphae
- Algal layer
- Soredia
- Fungal hyphae

20 μm
Types of Lichens

A fruticose (shrublike) lichen

Crustose (encrusting) lichens

A foliose (leaflike) lichen
Fungi Plant Pathogens

(a) Corn smut on corn

(b) Tar spot fungus on maple leaves

(c) Ergots on rye

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.
Fungal Animal Pathogens

- **Mycosis**
 - Skin (cutaneous) mycoses
 - Systemic mycoses
 - Opportunistic mycoses
Fungal Uses

• Food!
• The emerald ash borer is an insect that attacks ash trees. It is in turn parasitized by a pathogenic fungus that holds promise as a biological insecticide. The parasitic fungus appears as white fuzz on the body of the insect. (credit: Houping Liu, USDA Agricultural Research Service)
Antibiotics (Alexander Fleming)

Staphylococcus

Penicillium

Zone of inhibited growth
<table>
<thead>
<tr>
<th>Fungal Phylum</th>
<th>Distinguishing Features of Morphology and Life Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chytridiomycota (chytrids)</td>
<td>Flagellated spores</td>
</tr>
<tr>
<td>Zygomycota (zygote fungi)</td>
<td>Resistant zygosporangium as sexual stage</td>
</tr>
<tr>
<td>Glomeromycota (arbuscular mycorrhizal fungi)</td>
<td>Form arbuscular mycorrhizae with plants</td>
</tr>
<tr>
<td>Ascomycota (sac fungi)</td>
<td>Sexual spores (ascospores) borne internally in sacs called asci; ascomycetes also produce vast numbers of asexual spores (conidia)</td>
</tr>
<tr>
<td>Basidiomycota (club fungi)</td>
<td>Elaborate fruiting body (basidiocarp) containing many basidia that produce sexual spores (basidiospores)</td>
</tr>
</tbody>
</table>